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Ionic association of strong univalent symmetrical electrolytes dissolved in Hydrogen
Bonded Solvents (HBS) having high dielectric constants, has been studied in terms of
mean ionic actmty coefficient. This parameter has been analysed with the Fuoss’s Paired
Ton Model in the concentration range 0.5-500molm ~3. The experimental data are
consistent with this model. It has been shown that fits to the experimental data could
be obtained with fixed values of fraction of contact pairs a and Gurney radius
corresponding to the Contact Pair (CP). The results of fractions of free ions v and
conducting ions (p) as a function of concentration are also discussed. Conductimetric
pairing constants K, and Gibbs free energy AG are deduced to explain this ionic
association. The influence of the dielectric constant of the solvent on the ionic
association has been also investigated in this work.
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1. INTRODUCTION

Tonic association of electrolyte solutions was the interest of researchers
over several years since the end of the nineteenth century until 1980.
One amongst of the transport parameters which is convenient to
explain this ionic association is the activity. In 1926, Debye and
Huckel derived theoretically their famous formula by assuming that
the electrolyte dissociates completely (no association). They, therefore,
ascribed the decrease of the mean ionic activity coefficient, with
increasing concentration, both to the long range Coulombic interac-
tions and short range repulsive interactions.

Moreover, as it is shown in previous experimental works [1, 2] the
mean ionic activity coefficient starts to deviate from the Debye-Huckel
(D.H.) limiting line at a concentration less than 10mol - m~3, This is
attributed to the negligence of the short range hard-core repulsive
interactions between ions as a consequence of electrostatic association.
The latter has been underestimated by the linearised Poisson—
Boltzmann approximation employed by Debye and Huckel [3] to
describe the distribution of ions. This approximation implies that the
electrostatic energy is much less than the thermal energy.

However, when the concentration of the electrolyte solution
increases, the short range repulsive force should be taken into account.
This means that as the ions approach to each other to form pairs, their
sizes and shapes ought to be taken into consideration. This is due to
Bjerrum who suggested in 1926, that some ions can be considered to be
bound together and therefore do not contribute to the conductance
process. Following this, a paired ion model has been proposed by
Fuoss [4] who classifies ions in one of the three following categories.
The first one concerns an ion which couples its nearest neighbour of
opposite sign to form a Contact Pair (CP). The second one concerns
an ion whose Gurney cosphere overlaps with that of another ion of
opposite sign, as a result of the solvation effect, to form a Solvent
Separated Pair (SSP). And finally, the third one concerns an ion which
finds no ion of opposite sign in the surrounding of the Gurney
cosphere, and is called an unpaired ion.

The D.H. limiting law is well obeyed up a concentration less than
10molm 3, but does not hold for experimental data beyond this
concentration and extending to 500 molm ~3. As a matter of fact, we
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attempt to use the Fuoss Paired Ion Model which takes account of
the size of the interacting ions, from a certain concentration. There-
fore, we may be able, to reduce the differences between the experi-
mental data and those predicted by the limiting law. Finally, we
could understand, for example, the ionic association in some
Hydrogen Bonded Solvents (HBS). Such solvents are interesting to
investigate because the hydrogen bonding which they formed with
the dissolved ions, contribute appreciably to the ion-solvent inter-
action. The solvents chosen are Glycerol and Ethylene Glycol (EG)
because they are similar to Water since they display intermolecular
Hydrogen Bonding and have high values of dielectric constants
(e, > 40).

As far as we know there was no published work in the literature
which has tested Fuoss’s Model on activity. However, in 1987
Champeney et al. [S], found this model suitable to test their
experimental data on conductivity.

2. EXPERIMENTAL

Experimental procedure undertaken to deduce mean ionic activity
coefficient is described in details in Refs. [1,2]. Nevertheless, we
present here, just a brief description of the experimental set up with the
aim to make our paper self contained.

Experimental ionic activity coefficients are deduced from meas-
urements of Electro-Motive-Forces (EMF) which are generated in
Concentration Cells of solutions of strong univalent electrolytes. The
cells are: cell with transference using a liquid junction and cell without
transference using the liquid amalgam bridge to link the two half cells.
The EMF’s were measured using a Solartron 7065 digital voltmeter
which has an input resistance greater than 100 G).

Ag/AgCl electrodes were prepared by electrolysis in 100mol - m ~3
solution of HCI, with a current density of about 0.6 mA - cm ~ 2. From
all the electrodes prepared, one could always, find a pair which
displayed a potential difference less than 0.1 mV, when dipping into a
solution of KCl of concentration 100mol - m 3,

KCl, NaCl and LiCl used throughout the experiment, are Aldrich
gold label (more than 99% pure). Glycerol and Ethylene Glycol are
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also Aldrich gold label solvents having relatively high viscosities, in
which traces of water were reduced by distillation.

On account of the high hygroscopic nature of both Ethylene Glycol
and Glycerol, solutions were prepared inside a glove box filled with
purified Argon gas, in the order to avoid errors arising from traces of
water.

The measurements have been made inside a water bath where the
temperature was fixed at 25°C.

3. RESULTS AND DISCUSSION

3.1. Mean Jonic Activity Coefficient

Mean ionic activity coefficients are deduced iteratively by combining
Nernst equations (1), (2) and the extended D.H. law Eq. (4). The ratio
between the EMF’s of the most concentrated cells with and without
transference, gives the value of the transference number. From the
most dilute cell with transference, the transference number is, also
deduced from the Nernst equation Eq. (1) where the mean ionic
activity coefficients are calculated using D.H. limiting law Eq. (3).
Hence, the transference numbers at intermediate concentrations, are
deduced by assuming a linear interpolation.

2RT [?
|EL| :—F_/ tuydLna + (1)
1
_ 2RT at>
|EamaLc| —Tlﬂail )
—e3(2NC)'2
Lnfy = 3
/s 8m(eoe,KT)*/? ®
—e3(2 1/2
87(eoe,KT)

with
ai=f:C (5)
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a 4 is the mean ionic activity; f. is the ionic activity coefficient; C is
the concentration; R is the molar ideal gas constant, F is the Faraday
constant; T is the absolute temperature; e is the electronic charge; Ny
is the Avogadro number; ¢ is the permitivity of the vacuum; ¢, is the
relative permitivity of the medium; X is the Boltzman constant and 4

® D.H.predicted data
® Experimental data

A Fuoss theoretical data
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FIGURE 1 Mean ionic activity coefficient of KCl-Water versus square root of
concentration, R;=0.314nm, o =0.750.
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FIGURE 2 Mean ionic activity coefficient of NaCl-Water versus square root of
concentration; Rg=0.276 nm, a =0.840.

is an empirical constant. In Figures 1-8, experimental data lie
above the D.H. limiting law, and start to deviate from it earlier
at a concentration less than 10mol - m ~3, One can perhaps attribute
this to the ionic association with increasing concentration, which
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B D.H.predicted data
® Experimental data
A Fuoss theoretical data
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FIGURE 3 Mean ionic activity coefficient of LiCl-Water versus square root of
concentration; Rg=0.259nm, o =0.885.

counteracts the usual departure from the limiting line. However, by
using Fuoss’s model {4], we could, always find a theoretical curve
which approaches the limiting line from above and fits approximately
all the experimental points, provided values of Rgumey (Rg) and o



07:53 28 January 2011

Downl oaded At:

16 M. KAMECHE et al.

-0,5 -

-1,0 4 [ ]

Ln(f,)
/

-1,5

-2,0-

B D.H.predicted dats
@ Experimental data
A  Fuoss theoretical data

N\

N

]7 L]
o 5 10

(C/mol.m'3)"‘2

1
15 20

25

FIGURE 4 Mean ionic activity coefficient of KCI-EG versus square root of

concentration; Rz =0.314nm, a=0.580.

are chosen properly. Rg is the radius of the Gurney cosphere and o
is the fraction of the Contact Pairs that do not contribute to the

conduction process.

Hence, when we increase the concentration of the electrolytic
solution, the size of the interacting ions i.e., Rg, and their fraction i.e.,
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FIGURE 5 Mean ionic activity coefficient of NaCl-EG versus square root of

concentration; R;=0.276 nm, a =0.570.

« should be taken into account. As a result the expression of the mean

ionic activity coefficient becomes:

Bk

s =% %Rg)

(6)
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FIGURE 6 Mean ionic activity coefficient of LiCI-EG versus square root of
concentration; Rg=0.259 nm, o =0.550.

where
e2

P = Gneoe KT 7
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FIGURE 7 Mean ionic activity coefficient of KCl- Glycerol versus square root of

concentration; R;=0.314nm, a =0.600.

but, according to Fuoss’s model, we have the modified expression of

the inverse radius of the ionic atmosphere, i.e.,

= 2N, Ce? 12
- EoE,KT

(8)
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FIGURE 8 Mean ionic activity coefficient of NaCl-Glycerol versus square root of
concentration; Rg=0.276 nm, a = 0.600.

~ being the fraction of the unpaired ions, and its expression may
be obtained by combining the equations of Fuoss 1.13, 1.9, 4.12-4.14
[4] ie.,

Y*4nNoR%C

L 8
=11 a) e""(Ra(HRG\/ST_w No'yc))

(%)
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It should be pointed out that for dilute solutions, Eq. (6) can be
approximated to yield the D.H. limiting law given by Eq. (3).

We have started the fitting by fixing the value of R; equal to the sum
of the crystallographic radii of the interacting ions. The value of « is
set equal to 0.5 as a first approximation as it is recommended by Fuoss
[4], in high dielectric constant solvents. Then, we have carried out a
series of successive changes, until the best curve fitting is obtained
(see Figs. 1—8). However, at concentrations 100 and 500mol - m ~3,
discrepancies are found in the case of LiCl because the experimental
data are, perhaps, surestimated. Other values of Rg greater than the
sum of the Pauling crystallographic radii have been used but they did
never allow a fitting up to 500mol - m~3,

The resolution of Eq. (9) has been done by a numerical analysis
method. In fact, for given values of Rg, C and a, we have set, initially,
the value of v equal to 1 and, after, we have carried out a series of
iterations until the value of v converged towards a constant value close
to 1. Then, the value of s has been calculated. Therefore, the value of
f+ has been deduced. This method has been followed for all the
concentrations. In Table IX, we summarize the values of Rz and a
that correspond to the best fitting.

From this table, we may make the following comments:

o The value of Rg is exactly equal to the sum of the Pauling
crystallographic radii of the interacting ions being in contact (CP).

e When the size of the electrolyte increases, the value of a decreases in
Water, increases in EG, and remains constant in Glycerol. More-
over, its variation in water is more important than in EG, probably
because of the increase in the viscosity. In addition, for a given
electrolyte, o varies in the following order i.e.,

Qwater > QGlycerol > XEG

This order is well correlated to that of their dielectric constants i.e.,

é:)Vater > Efvlycerol > EEG

Consequently, the fitting of activity parameter makes in evidence only
the ion—ion interaction, regardless the medium. Both in concentrated
solutions (the short repulsive forces) and dilute solutions (long range
Coulombic interactions), the interacting distance (Rg) does not
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change and it is not influenced by the surrounding solvent molecules.
This result seems entirely different to that found in the conductivity
fitting [4, 5].

3.2. Ionic Association

In order to understand the ionic association, it is worthwhile to
mention the dependence of both v and p upon concentration; p being
the fraction of conducting ions. These two parameters decrease with
increasing concentration. For each concentration, the value of p is
found to be greater than that of «, as has already been noticed by
Champeney [4]. This is illustrated in Figure 9

p=1l-a(l-9) (10)
Moreover, the values of p and + vary in the following sequence:

p(KCI) > p(NaCl) > p(LiCl)
4(KC1) > y(NaCl) > y(LiCl)

These sequences are well shown in Figures 10—15.

3.3. Conductimetric Pairing Constant

As a result of the thermal motion and inter-ionic forces, an
equilibrium can be established and may be represented by the
following reaction:

At +B s (AT..... B) = A"B~ = AB (11)

where AY, B~, (AT ..... B7), AYB~ and AB represent respectively,
free ions, Solvent Separated Pairs (SSP), Contact Pairs (CP) and
neutral molecules. The association constant K, of this pairing process
may be given by the following formula [6):

10%p(1 - 7)

= 2
©TMCYfy (2
M is the molecular weight of the solvent and p is its density. Ky =
((1 = v)/C~*f% ) being the conductimetric pairing constant. It may be
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~—8— Fraction of conducting ions ( p )
—@— Fraction of unpaired ions {y)

T
0 100 200

T T T
300 400 500

(C/mol.m'a)

FIGURE 9 Fractions of conducting ions and unpaired ions of KCl-Glycerol versus
concentration.

calculated explicitly by the following formula,
KA=KR(Ks+1) (13)

KR is the pairing constant which corresponds to the formation of
(SSP) from free ions; K is the pairing constant which corresponds to
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—8—KCl Rg=0314 nm ; a = 0.750))
1.0 —@—NaCl (Rg=0276 nm ; a = 0.840 )
' —A—LiCl (Rg=0.259 nm ; o = 0.885)

0,3 LN LA
0 100 200

] T T

| I I
300 400 500
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FIGURE 10 Fraction of conducting ions in Water versus concentration.

the formation of (CP) from (SSP).

_(1-a)(1-9)
K="
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1,1
—@—KCl (Rg=0314 nm; o = 0.750)
1 —@—NaCl (Rg= 0.276 nm ; @ = 0.840)
—A—LiCl (Rg=0.259 nm ; o = 0.885)

1,0

0,2 4—— 17—
0 100 200

T T T

T T T
300 400 500
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FIGURE 11 Fraction of unpaired ions in Water versus concentration.
K=— (15)

Except the anomalous behaviour of KCl in Glycerol, the values of K,

remain almost constant up to a concentration of about 100mol - m ™3,
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—8—KCl (Rg=0.314 nm ; o = 0.580)
1,0 0 —@—NaCl (R;=0.276 nm ; ¢ = 0.570 )
—A— LiCl (Rg=0.259 fim ; a = 0.550 )

LU L Ll
(1] 100 200 300 400
(C/mol.m")

—
500
FIGURE 12 Fraction of conducting ions in EG versus concentration.

and increase sharply at 500 mol - m ~3 (see Figs. 16-18). In addition, it
can be noticed that the curves lie one above another with the following
order,

KA (LiCl) > KA(NaCl) > K5 (KCl)
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—B—KCl (Rg=0.314 nm ; a = 0.580)
1 ’ 0 —8—NaCl (R;=0.276 nm ; a = 0.570)
—A—LiCl (Rg=0.259 nm ; « = 0.550)

L] I L) I T T | T I
0 100 200 300 400 500
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FIGURE 13 Fraction of unpaired ions in EG versus concentration.

Therefore, the increase of K, associated with reduction in ion radius is
usually attributed to the increase of the Coulombic force while the ions
are in interaction.

Besides, for a given electrolyte, the sharp increases beyond
100mol - m 3, in EG and Glycerol are higher than in Water. This is
probably due to the smallness values of their dielectric constants.
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T T T
0 100 200 300 400 500

C/mol.m™?

FIGURE 14 Fraction of conducting ions in Glycerol versus concentration.

3.4. Gibbs Free Energy of the Pairing Equilibrium

Gibbs free energy AG of the pairing equilibrium may defined by the
following formula:

AG = —RT La(K,) (16)
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—B—KCl (Rg=0.314 0m ; « = 0.600)
—@= NaCl (R;=0.276 nm ; a = 0.600)

™

T | T

|
o 100 200

I 1
300 400 500
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FIGURE 15 Fraction of unpaired ions in Glycerol versus concentration.

As it is well known, the Gibbs free energy is the sum of the Enthalpy
(AH) and Entropy (— TAS). The enthalpy contains two energies. A
negative energy that contains the necessary work in separating a
Contact Pair to infinity, and a positive energy that corresponds to
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35
H KCl
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FIGURE 16 Conductimetric pairing constant in aqueous solutions versus con-

centration.

the last step of formation of a Contact Pair from a Solvent

Separated Pair.

As it is illustrated in Tables I-VIII, the values of the Gibbs free
energy are close to each other. For that reason, we have calculated the
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FIGURE 17 Conductimetric pairing constant in EG.

average values of three electrolytes which yielded the following
sequence,

AG(LiCl) > AG(NaCl) > AG(KCI)
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FIGURE 18 Conductimetric pairing constant in Glycerol versus concentration.

The obtained values of AG are, therefore, well correlated with
those of conductimetric pairing constants, since we need more
energy to separate two ions very close to each other to infinity
(see Tab. X). The sign (—) means that the energy is given to the
system.
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38 M. KAMECHE et al.
4. CONCLUSION

We have shown that Debye-Huckel law can be used successfully to
reproduce experimental mean ionic activity coefficient of some alkali
metals, up a concentration less than 10mol - m~3. However, it fails
for concentrations greater than 10mol-m~3 and extending to
500mol - m 3. As a matter of fact, the Fuoss paired ion model has
been used instead to reproduce all the experimental data. By using this
model, fits to the data could be obtained with a value of the Gurney
radius (Rg) equal to the sum of the Pauling crystallographic radii of
the ions being in interaction, provided the value of the fraction of
contact pairs (a) is chosen properly. The three solvents used behave
similarly in this context despite the differences in viscosity and
molecular size. The similarity is presumably caused by the solvents
being hydrogen bonded and having high relative permitivities. The
parameter (o) has been found to increase with increasing of the
dielectric constant of the solvent. Fuoss’s parameters ( p) and () have
been also deduced and show that the fraction of the ions contributing
to the conductivity process is always higher than that of unpaired ions.
The results of the conductimetric pairing constant and Gibbs free
energy make in evidence the fact that the smaller the size of the
electrolyte, the stronger the coupling between its interacting ions.
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